2 Produtos e Fatores Especiais

Constantes especiais

1.1 $$\pi = 3,14159 26535 87793...$$

1.2 $$ e = 2,71828 18284 59045...= \mathop {\lim }\limits_{n \to \infty } \left( {1 + \frac{1}{n}} \right)^n$$

= base natural dos logaritmos

1.3 $$\gamma =0,57721 56649 01532 6512...=$$constante de Euler= $$\lim_{x \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3}+... + \frac{1}{n}-\ln n\right)$$

1.4 $$e^\gamma=1,78107 24179 90197 9852... ver[1.3]$$

1.5 $$\sqrt e=1,64872 12707 00128 1468...$$

1.6 $$\sqrt \pi=\Gamma\left(\frac{1}{2}\right)=1,77245 38509 05516 02729 8167...$$

Onde $$\Gamma$$ é a função gama ver [25.1]

1.7 $$\Gamma\left(\frac{1}{3}\right)=2,67893 85347 07748...$$

1.8 $$\Gamma\left(\frac{1}{4}\right)=3,62560 99082 21908...$$

1.9 1 radiano $$=180º/\pi=57,29577 95130 8232...º$$

1.10 1º $$=\pi/180 radianos=0,01745 32925 19943 29576 92...radianos$$